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In a meta-analysis, the I-squared statistic
does not tell us how much the effect size varies

Michael Borenstein*
Biostat, Inc, New York, NY, USA
Accepted 2 October 2022; Published online xxxx

In any meta-analysis it is important to know how the effect
size varies across studies. For example, consider a meta-
analysis where the mean odds ratio is 0.50. If the odds ratio
consistently falls between 0.40 and 0.60, we might conclude
that the treatment works equally well in all populations. If the
odds ratio varies from 0.20 in some populations to 0.80 in
others, we might elect to employ this treatment in all popula-
tions but would also want to know why it works better in
some populations than in others. However, if the odds ratio
varies from 0.10 (beneficial) in some populations to 2.5
(harmful) in others, the mean becomes largely irrelevant. In
this case, we would need to determine where the treatment
would be beneficial and where it would cause harm.

For this reason, all reports of a meta-analysis attempt to
address heterogeneity. In medicine and epidemiology, the
primary index employed to report heterogeneity is the I-
squared (12) statistic [1,2]. While the use of P for this pur-
pose is ubiquitous, it is nevertheless a serious mistake based
on a fundamental misunderstanding of this index. The I* sta-
tistic does not tell us how much the effect size varies. It was
never intended to tell us how much the effect size varies and
cannot provide that information except when I is zero.

While this statement might sound surprising, a simple
thought experiment should convince the reader that this is
correct. Consider the following two meta-analyses.

1. The “off-hours” analysis

Sorita, et al. [3] performed a meta-analysis to see if pa-
tients suffering from a myocardial infarction were more
likely to die if they arrived at a hospital during *“off-hours”
(the overnight shift or on weekends) as compared with pa-
tients who arrived during daytime hours. An odds ratio
greater than 1.0 indicates that arriving at the hospital during

Declaration of interests: The authors declare that they have no known
competing financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

* Corresponding author. Biostat, Inc, 473 West End Avenue, New
York, NY 10024, USA. Tel.: + 1 201 541 5688; fax: +1 201 541 5526.

E-mail address: Biostat]100@GMail.com.

https://doi.org/10.1016/j.jclinepi.2022.10.003
0895-4356/© 2022 Published by Elsevier Inc.

off-hours is associated with increased risk. The mean odds
ratio was 1.06 with a 95% confidence interval of
1.04—1.09, which tells us that patients who presented during
off-hours were more likely to die on average. However, we
also need to know how widely the effect size varies. Figure 1
shows three possible ways that the effect size might vary
across populations. In panel A, the odds ratio consistently
falls in the range of 0.96—1.17. In panel B the odds ratio
in some studies is 0.73, while in others is 1.56. In panel C
the odds ratio varies from 0.50 in some studies to 2.28 in
others. It would be important to know which of these panels
corresponds to the actual distribution of effects. If the distri-
bution resembles panel A, we might conclude that the effect
is always relatively small. On the other hand, if the distribu-
tion resembles panel B, we would conclude that there are
some hospitals where presenting off-hours substantially re-
duces the risk of death and others where it substantially in-
creases the risk of death. It would be imperative to identify
factors that account for this difference. The same holds true
to an even greater extent in panel C. For example, it could be
possible that the hospitals at the left-hand side of the distri-
bution have a cardiac team on duty at all hours, while hos-
pitals at the right-hand side of the distribution do not.

So, which of these panels corresponds to the actual dis-
tribution of effects? In this analysis, Pis reported as 75%,
which is typically classified as ‘“high” heterogeneity. On
that basis, most readers would assume that the distribution
corresponds to panel B or C. That would be a mistake, since
the distribution actually corresponds to panel A (as indi-
cated by the check-mark in that panel).

2. The “transfusion” analysis

Holst, et al. [4] published a meta-analysis that looked at
the relationship between two strategies for blood transfu-
sion and risk of death. Under the “‘liberal” strategy, trans-
fusion was employed when relatively liberal criteria were
met. Under the ‘“‘conservative” strategy, transfusion was
employed only when more stringent criteria were met. An
odds ratio less than 1.0 favors the conservative approach,
while an odds ratio greater than 1.0 favors the liberal
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Off-Hours Analysis I*=75% Heterogeneity is “High”

A \/' B

Cc

0.00 0.50 1.00 1.50 2.00 2.50 0.00 0.50 1.00

1.50 2.00 2.50 0.00 0.50 1.00 1.50 2.00 2.50

Fig. 1. Off-hours analysis — three possible distributions where |-squared is 75%.

approach. The mean odds ratio was 0.96 with a 95% confi-
dence interval of 0.78—1.18. Thus, there is no evidence of a
relationship on average. However, we also need to know
how widely the effect size varies. Figure 2 shows three
possible ways that the effect size might vary across popula-
tions. In panel A, the odds ratio consistently falls in the
range of 0.74—1.23. In panel B the odds ratio in some
studies is 0.69, while in others it is 1.33. In panel C the
odds ratio varies from 0.56 in some studies to 1.63 in
others. It would be important to know which of these panels
corresponds to the actual distribution of effects. If the dis-
tribution resembles panel A, we might conclude that the ef-
fect is always relatively small. On the other hand, if the
distribution resembles panel B we would conclude that
there are some types of patients where the conservative
strategy is better and others where the liberal strategy is
preferable. It would be imperative to identify factors that
account for this difference. The same holds true to an even
greater extent in panel C.

So, which of these panels corresponds to the actual dis-
tribution of effects? In this analysis, P is 29%, which is
typically classified as “low” heterogeneity. On that basis,
most readers would assume that the distribution corre-
sponds to panel A or B. That would be a mistake since
the distribution actually corresponds to panel C (as indi-
cated by the check-mark).

Thus, in either analysis, P did not provide useful informa-
tion about the dispersion in effects. Indeed, it did not even tell
us which of the two analyses had the greater amount of

dispersion. In the analysis where I was 29%, the effects var-
ied over a substantially wider interval than the analysis where
I? was 75%. If this seems odd, it’s only because we think that
P reflects the amount of dispersion. It does not.

3. What P tells us

To explain what P does tell us, I need to provide some
background information. In a meta-analysis, we distinguish
between the true effect size and the observed effect size for
each study. The true effect size is what we would see if we
somehow knew the effect size in the population. The
observed effect size is the effect size that we see in the sam-
ple. The latter serves as an estimate of the former but
invariably differs from the former because of sampling er-
ror. For purposes of the present discussion, the relevant
point is that the variance of observed effects is not the same
as the variance of true effects. Specifically, the variance of
the observed effects is equal to the variance of true effects
plus the additional variance due to sampling error. There-
fore, the distribution of observed effects tends to be wider
than the distribution of true effects [5].

Once we understand that we are dealing with two
distinct distributions, we might want to ask about the rela-
tionship between them. This is the function of /°. It tells us
what proportion of the observed variance reflects variance
in true effects rather than sampling error. In the off-hours
analysis, I was 75% which tells us that 75% of the variance

Transfusion Analysis /°=29% Heterogeneity is “Low”
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Fig. 2. Transfusion analysis — three possible distributions where |-squared is 29%.
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in observed effects reflects variance in true effects. In the
transfusion analysis, P was 29% which tells us that 29%
of the variance in observed effects reflects variance in true
effects.

Critically, I is a proportion, not a value on an absolute
scale. It tells us what proportion of the variance in observed
effects reflects variance in true effects rather than sampling
error. It does not tell us how much the true effects vary. For
that we would need to take account not only of / but also
the variance of observed effects.

In the off-hours analysis, the observed effects all fell in a
narrow range. The I value of 75% tells us that most of the
observed dispersion was “‘real”’, but 75% of a small number
is still a small number. By contrast, in the transfusion anal-
ysis the observed effects varied widely. The I° value of 29%
tells us that only a small proportion of that dispersion is
real. But a small proportion of a large number can still be
a large number.

4. The prediction interval

If the I° statistic does not tell us how much the effect size
varies, what statistic does provide that information?

That information is provided by the prediction interval.
The prediction interval is defined as the mean plus or minus
(roughly) two standard deviation of the true effects. If we
can assume that the effects are normally distributed (in
the relevant units) we can expect that the true effect size
in 95% of all comparable populations will fall within this
interval.

The prediction interval tells us how much the effect size
varies using the same scale as the effect size itself. As such,
it provides information about the absolute amount of
dispersion, and it does so using an index that is intuitive
and clear. Additionally, it frames this information in rela-
tion to the mean effect size rather than in the abstract,
and thus provides information that is clinically relevant.
In the off-hours analysis, instead of reporting that I* is
75% we would report that the odds ratio in any single pop-
ulation is expected to fall between 0.96 and 1.17. In the
transfusion analysis, instead of reporting that I* is 29%
we would report that the odds ratio varies from 0.56 in
some populations to 1.63 in others.

When we report the prediction interval, we need to be
aware of its limitations. The interval will only be accurate
if based on a sufficient number of studies. Therefore, it
might be best to report the interval only when this condition
is met (this caveat applies also to 7° and I°). In computing
the prediction interval, we assume that the effects are nor-
mally distributed in the relevant metric, an assumption that
will not always be true. Therefore, if the interval includes
effects on both sides of the null value, we should check
to see if there actually are studies in the analysis that sup-
port this assumption. Additionally, we should adjust the in-
terval to allow for the fact that the mean and the standard

deviation are estimated rather than known [5]. Many com-
puter programs for meta-analysis now offer the option to
compute the prediction interval and will incorporate this
adjustment [6].

5. An analogy

This paper is not intended to serve as a criticism of L.
The I statistic was intended to tell us what proportion of
the observed variance reflects variance in true effects.
When employed for this purpose, it is an entirely valid
and useful statistic. However, when researchers ask about
heterogeneity, they want to know how much the effect size
varies. Therefore, they use the I° statistic as a surrogate for
the amount of heterogeneity on an absolute scale. The F
statistic was never intended to be used for this purpose.

It is instructive to draw an analogy between this issue
and the well-known problem that researchers sometimes
conflate the P-value with the effect size in primary studies.
The P-value was intended to tell us something about the
viability of the null hypothesis. When employed for this
purpose it is an entirely valid and useful statistic. However,
when researchers ask about significance, they want to know
about clinical significance rather than statistical signifi-
cance. Therefore, they use the P-value as a surrogate for
the magnitude of the effect. The P-value was never in-
tended to be used for this purpose.

The analogy can be taken one step further. The fact that
the P-value was employed as a surrogate for the effect size
millions of times made this practice widely accepted but
did not make it correct. Similarly, the fact that hundreds
of thousands of papers employ I° as a surrogate for the
amount of heterogeneity does not make this practice cor-
rect. I is defined as a proportion, not an absolute amount.
This is a definition, not an opinion [7].

6. Conclusion

To understand the potential impact of a treatment we
need to understand how the effect size varies across
studies. When a paper uses the ° value to quantify hetero-
geneity readers do not have any way of knowing how much
the effect size varies. They will have a vague idea (at best)
or a completely wrong idea (as in the examples cited
earlier). One can imagine a group of clinicians discussing
how to address the risks associated with off-hours presen-
tation, based on the fact that I* was 75%. Each participant
would have their own idea of what the dispersion actually
looked like. The group would be trying to reach a
consensus on what to recommend, when each member
would be working with their own set of facts. Some would
be thinking that the distribution resembled plot B in
Figure 1, while others would be thinking that it resembled
plot C. This by itself would be problematic since these two
distributions might lend themselves to different strategies.
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In this case, there is the additional irony that none of the
discussants would be correct since the distribution actually
resembles plot A.

To have an informed discussion about the potential util-
ity of an intervention we need a statistic that reflects the
distribution of true effects, and the prediction interval is
the only statistic that serves this purpose. It provides the in-
formation that researchers and clinicians are asking for
when they ask about heterogeneity—the information that
they believe (incorrectly) is being provided by other statis-
tics such as I°. The prediction interval should be reported as
a part of any meta-analysis where we have a sufficient num-
ber of studies to estimate it reliably [8].

In 1997, John C. Bailar III published an editorial entitled
“The Promise and Problems of Meta-Analysis’ [9]. He ex-
pressed a concern that researchers would not properly
address heterogeneity, and that ‘“‘any attempt to reduce
the results to a single value, with confidence bounds, is
likely to lead to conclusions that are wrong, perhaps seri-
ously so”. As it turns out, Bailer was prescient. Twenty-
five years after that editorial, virtually all meta-analyses
report the I° statistic. Since this does not provide the infor-
mation that researchers would need to properly address het-
erogeneity, they resort to focusing on the mean with its
confidence interval. They may reach conclusions that are
wrong, perhaps seriously so [10].

By contrast, when we report the prediction interval, we
do know the distribution of effects, and we can therefore
take this into account when discussing the utility of the
intervention. For example, we might report that the inter-
vention is always clinically useful, or that it is clinically
useful in some populations but not in others, or that it is
beneficial in some populations but harmful in others. By
making this discussion possible, the prediction interval
can change the framework for how we think about the re-
sults of a meta-analysis.

For a PDF about heterogeneity and free software to
compute prediction intervals, use the link to supplemental
materials or visit www.Meta-Analysis.com/ClinEpid.

Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/].jclinepi.2022.10.003.
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